skip to main content


Search for: All records

Creators/Authors contains: "Litke, Katrina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    SPT0311-58, a system of two interacting galaxies in the Epoch of Reionization, exists in one of the rarest, most massive dark matter halos theoretically possible in that era. Studying the interstellar medium (ISM) in these galaxies can illuminate the process of galaxy formation in the early Universe. In this work, we explore the multiphase ISM in this system, using ALMA observations of the [Cii] 158, [Oi] 146, [Nii] 122, and [Oiii] 88 fine-structure lines and dust continuum. We find wide variations in line ratios between the eastern and western galaxies, as well as across the western galaxy. Continuum colors indicate that SPT0311-58 E has a higher ionization parameter (logU2.8) than SPT0311-58 W (logU3.1). The ratio of [Oiii] 88–[Nii] 122 and the ionization parameter constraints combine to demonstrate near-solar metallicity in these objects just 800 Myr after the Big Bang.

     
    more » « less
  2. Abstract

    With ΣSFR∼ 4200Myr−1kpc−2, SPT 0346–52 (z= 5.7) is the most intensely star-forming galaxy discovered by the South Pole Telescope. In this paper, we expand on previous spatially resolved studies, using ALMA observations of dust continuum, [Nii] 205μm, [Cii] 158μm, [Oi] 146μm, and undetected [Nii] 122μm and [Oi] 63μm emission to study the multiphase interstellar medium (ISM) in SPT 0346–52. We use pixelated, visibility-based lens modeling to reconstruct the source-plane emission. We also model the source-plane emission using the photoionization codecloudyand find a supersolar metallicity system. We calculateTdust= 48.3 K andλpeak= 80μm and see line deficits in all five lines. The ionized gas is less dense than comparable galaxies, withne< 32 cm−3, while ∼20% of the [Cii] 158μm emission originates from the ionized phase of the ISM. We also calculate the masses of several phases of the ISM. We find that molecular gas dominates the mass of the ISM in SPT 0346–52, with the molecular gas mass ∼4× higher than the neutral atomic gas mass and ∼100× higher than the ionized gas mass.

     
    more » « less
  3. Abstract

    The SPT 0311–58 system atz= 6.900 is an extremely massive structure within the reionization epoch and offers a chance to understand the formation of galaxies at an extreme peak in the primordial density field. We present 70 mas Atacama Large Millimeter/submillimeter Array observations of the dust continuum and [Cii] 158μm emission in the central pair of galaxies and reach physical resolutions of ∼100–350 pc, among the most detailed views of any reionization-era system to date. The observations resolve the source into at least a dozen kiloparsec-size clumps. The global kinematics and high turbulent velocity dispersion within the galaxies present a striking contrast to recent claims of dynamically cold thin-disk kinematics in some dusty galaxies just 800 Myr later atz∼ 4. We speculate that both gravitational interactions and fragmentation from massive parent disks have likely played a role in the overall dynamics and formation of clumps in the system. Each clump individually is comparable in mass to other 6 <z< 8 galaxies identified in rest-UV/optical deep field surveys, but with star formation rates elevated by a factor of ~3-5. Internally, the clumps themselves bear close resemblance to greatly scaled-up versions of virialized cloud-scale structures identified in low-redshift galaxies. Our observations are qualitatively similar to the chaotic and clumpy assembly within massive halos seen in simulations of high-redshift galaxies.

     
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. ABSTRACT We present an extensive ALMA spectroscopic follow-up programme of the $z\, {=}\, 4.3$ structure SPT2349–56, one of the most actively star-forming protocluster cores known, to identify additional members using their [C ii] 158 μm and CO(4–3) lines. In addition to robustly detecting the 14 previously published galaxies in this structure, we identify a further 15 associated galaxies at $z\, {=}\, 4.3$, resolving 55$\, {\pm }\,$5 per cent of the 870 μm flux density at 0.5 arcsec resolution compared to 21 arcsec single-dish data. These galaxies are distributed into a central core containing 23 galaxies extending out to 300 kpc in diameter, and a northern extension, offset from the core by 400 kpc, containing three galaxies. We discovered three additional galaxies in a red Herschel-SPIRE source 1.5 Mpc from the main structure, suggesting the existence of many other sources at the same redshift as SPT2349–56 that are not yet detected in the limited coverage of our data. An analysis of the velocity distribution of the central galaxies indicates that this region may be virialized with a mass of (9$\pm 5)\, {\times }\, 10^{12}$  M⊙, while the two offset galaxy groups are about 30 and 60 per cent less massive and show significant velocity offsets from the central group. We calculate the [C ii] and far-infrared number counts, and find evidence for a break in the [C ii] luminosity function. We estimate the average SFR density within the region of SPT2349–56 containing single-dish emission (a proper diameter of 720 kpc), assuming spherical symmetry, to be roughly 4$\, {\times }\, 10^4$ M⊙ yr−1 Mpc−3; this may be an order of magnitude greater than the most extreme examples seen in simulations. 
    more » « less
  7. Aims . We present and study spatially resolved imaging obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) of multiple 12 CO( J  = 6 − 5, 8−7, and 9−8) and two H 2 O(2 02 −1 11 and 2 11 −2 02 ) emission lines and cold dust continuum toward the gravitationally lensed dusty star-forming galaxy SPT 0346-52 at z  = 5.656. Methods . Using a visibility-domain source-plane reconstruction we probe the structure and dynamics of the different components of the interstellar medium (ISM) in this galaxy down to scales of 1 kpc in the source plane. Results . Measurements of the intrinsic sizes of the different CO emission lines indicate that the higher J transitions trace more compact regions in the galaxy. Similarly, we find smaller dust continuum intrinsic sizes with decreasing wavelength, based on observations at rest frame 130, 300, and 450 μ m. The source shows significant velocity structure, and clear asymmetry where an elongated structure is observed in the source plane with significant variations in their reconstructed sizes. This could be attributed to a compact merger or turbulent disk rotation. The differences in velocity structure through the different line tracers, however, hint at the former scenario in agreement with previous [CII] line imaging results. Measurements of the CO line ratios and magnifications yield significant variations as a function of velocity, suggesting that modeling of the ISM using integrated values could be misinterpreted. Modeling of the ISM in SPT 0346-52 based on delensed fluxes indicates a highly dense and warm medium, qualitatively similar to that observed in high-redshift quasar hosts. 
    more » « less